Supplementary information

In this supplementary information we provide proofs for some technical statements that are used in the main document.

8 General facts about the fidelity

The following lemma states a standard concavity property of the fidelity which is presented here for completeness and since we are interested in the case where equality holds.

Lemma 8.1. For any density operators ρ , ρ' , σ , and σ' , and for any $\rho \in [0,1]$ we have

$$F(p\rho + (1-p)\rho', p\sigma + (1-p)\sigma') \ge pF(\rho, \sigma) + (1-p)F(\rho', \sigma'), \tag{S.1}$$

with equality if both of ρ and σ are orthogonal to both of ρ' and σ' .

Proof. Note first that for any two normalized and mutually orthogonal vectors $|0\rangle$ and $|1\rangle$ in an ancilla space, we have

$$F(p\rho + (1-p)\rho', p\sigma + (1-p)\sigma') \ge F(p\rho \otimes |0\rangle\langle 0| + (1-p)\rho' \otimes |1\rangle\langle 1|, p\sigma \otimes |0\rangle\langle 0| + (1-p)\sigma' \otimes |1\rangle\langle 1|), \quad (S.2)$$

because of the monotonicity of the fidelity under the partial trace. Furthermore, if both of ρ and σ are orthogonal to both of ρ' and σ' then there exists a trace-preserving completely positive map that generates the corresponding state $|0\rangle$ or $|1\rangle$ of the ancilla system. This implies that, in this case, the inequality also holds in the other direction. It therefore suffices to prove (S.1) with ρ and σ replaced by $\rho \otimes |0\rangle\langle 0|$ and $\sigma \otimes |0\rangle\langle 0|$, and with ρ' and σ' replaced by $\rho' \otimes |1\rangle\langle 1|$ and $\sigma' \otimes |1\rangle\langle 1|$, respectively. In other words, it remains to show that, for the case where ρ and σ are orthogonal to ρ' and σ' , (S.1) holds with equality, i.e.,

$$F(\bar{\rho}, \bar{\sigma}) = pF(\rho, \sigma) + (1 - p)F(\rho', \sigma') , \qquad (S.3)$$

where $\bar{\rho} = p\rho + (1-p)\rho'$ and $\bar{\sigma} = p\sigma + (1-p)\sigma'$.

For this, let $|\phi\rangle$, $|\phi'\rangle$, $|\psi\rangle$, and $|\psi'\rangle$ be purifications of ρ , ρ' , σ , and σ' , respectively, such that $F(\rho,\sigma) = \langle \phi | \psi \rangle$ and $F(\rho',\sigma') = \langle \phi' | \psi' \rangle$. It is easy to verify that

$$|\bar{\phi}\rangle = \sqrt{p}|\phi\rangle \otimes |0\rangle + \sqrt{1-p}|\phi'\rangle \otimes |1\rangle \quad \text{and} \quad |\bar{\psi}\rangle = \sqrt{p}|\psi\rangle \otimes |0\rangle + \sqrt{1-p}|\psi'\rangle \otimes |1\rangle$$
 (S.4)

are purifications of $\bar{\rho}$ and of $\bar{\sigma}$, respectively. Hence,

$$pF(\rho,\sigma) + (1-p)F(\rho',\sigma') = p\langle\phi|\psi\rangle + (1-p)\langle\phi'|\psi'\rangle = \langle\bar{\phi}|\bar{\psi}\rangle \le F(\bar{\rho},\bar{\sigma}), \tag{S.5}$$

which proves one direction of (S.3).

To prove the other direction, let π be the projector onto the joint support of ρ and σ , i.e., $\pi\rho = \rho$ and $\pi\sigma = \sigma$. Similarly, let π' be the projector onto the joint support of ρ' and σ' , i.e., $\pi'\rho' = \rho'$ and $\pi'\sigma' = \sigma'$. By the condition that ρ and σ are orthogonal to ρ' and σ' , the two projectors must be orthogonal, i.e., $\pi\pi' = 0$. Furthermore, let $|\bar{\phi}\rangle$ be a purification of $\bar{\rho}$ and let $|\bar{\psi}\rangle$ be a purification of $\bar{\sigma}$ such that $F(\bar{\rho}, \bar{\sigma}) = \langle \bar{\phi} | \bar{\psi} \rangle$. Because

$$p\rho = \pi \bar{\rho}\pi$$
 and $(1-p)\rho' = \pi' \bar{\rho}\pi'$ (S.6)

 $\pi|\bar{\phi}\rangle$ and $\pi'|\bar{\phi}\rangle$ are purifications of $p\rho$ and $(1-p)\rho'$, respectively. Similarly, $\pi|\bar{\psi}\rangle$ and $\pi'|\bar{\psi}\rangle$ are purifications of $p\sigma$ and $(1-p)\sigma'$, respectively. Hence, we have

$$F(\bar{\rho}, \bar{\sigma}) = \langle \bar{\phi} | \bar{\psi} \rangle = \langle \bar{\phi} | \pi | \bar{\psi} \rangle + \langle \bar{\phi} | \pi' | \bar{\psi} \rangle \le F(p\rho, p\sigma) + F((1-p)\rho', (1-p)\sigma')$$
$$= pF(\rho, \sigma) + (1-p)F(\rho', \sigma') . \quad (S.7)$$

This proves the other direction of (S.3) and thus concludes the proof.

The following lemma generalizes the Fuchs-van de Graaf inequality which has been proven for states to non-negative operators. The result is standard and stated here for completeness.

Lemma 8.2. For any two non-negative operators ρ and σ with $tr(\rho) \ge tr(\sigma)$, the trace norm of their difference is bounded from above by

$$\|\rho - \sigma\|_1 \le 2\sqrt{\operatorname{tr}(\rho)^2 - F(\rho, \sigma)^2} \ . \tag{S.8}$$

Proof. Let ω be a non-negative operator with $\operatorname{tr}(\omega) = \operatorname{tr}(\rho) - \operatorname{tr}(\sigma)$, whose support is orthogonal to the support of both ρ and σ , and define $\sigma' = \sigma + \omega$. Then $\operatorname{tr}(\rho) = \operatorname{tr}(\sigma')$ and

$$\|\rho - \sigma\|_1 = \|\rho - \sigma'\|_1$$
 and $F(\rho, \sigma) = F(\rho, \sigma')$. (S.9)

It therefore suffices to show that the claim holds for operators with $tr(\rho) = tr(\sigma) = c \in \mathbb{R}^+$. Furthermore for c > 0, defining $\bar{\rho} = \rho/c$ and $\bar{\sigma} = \sigma/c$ and noting that

$$\|\rho - \sigma\|_1 = c \|\bar{\rho} - \bar{\sigma}\|_1 \quad \text{and} \quad F(\rho, \sigma) = cF(\bar{\rho}, \bar{\sigma}) , \qquad (S.10)$$

it suffices to verify that the claim holds for $tr(\rho) = tr(\sigma) = 1$ which follows by the Fuchs-van de Graaf inequality [FvdG99].

9 General facts about the measured relative entropy

Definition 9.1. The measured relative entropy between density operators ρ and σ is defined as the supremum of the relative entropy with measured inputs over all POVMs $\mathcal{M} = \{M_x\}$, i.e.,

$$D_{\mathbb{M}}(\rho \| \sigma) = \sup \{ D(\mathcal{M}(\rho) \| \mathcal{M}(\sigma)) : \mathcal{M}(\rho) = \sum_{x} \operatorname{tr}(\rho M_x) |x\rangle \langle x| \text{ with } \sum_{x} M_x = \operatorname{id} \} , \qquad (S.11)$$

where $\{|x\rangle\}$ is a finite set of orthonormal vectors.

This quantity was studied in [HP91, Hay01] where it was shown that $\frac{1}{n}D_{\mathbb{M}}(\rho^{\otimes n}\|\sigma^{\otimes n})$ converges to the relative entropy $D(\rho\|\sigma) := \operatorname{tr}(\rho(\log \rho - \log \sigma))$.

Lemma 9.2. Let ρ , ρ' , σ , and σ' be density operators such that both ρ and σ are orthogonal to both ρ' and σ' . For any $p \in [0,1]$ we have

$$D(p\rho + (1-p)\rho' \| p\sigma + (1-p)\sigma') = pD(\rho\|\sigma) + (1-p)D(\rho'\|\sigma').$$
(S.12)

Proof. By the orthogonality of ρ and ρ' (respectively σ and σ') we have

$$\log(p\rho + (1-p)\rho') = \log(p\rho) + \log((1-p)\rho') = \log(p) + \log(1-p) + \log(\rho) + \log(\rho')$$
(S.13)

and $\rho \log \rho' = 0$. Thus by definition of the relative entropy we obtain the desired statement.

Lemma 9.3. Let ρ , ρ' , σ , and σ' be density operators such that both ρ and σ are orthogonal to both ρ' and σ' . For any $p \in [0,1]$ we have

$$D_{\mathbb{M}}(p\rho + (1-p)\rho' \| p\sigma + (1-p)\sigma') = pD_{\mathbb{M}}(\rho \| \sigma) + (1-p)D_{\mathbb{M}}(\rho' \| \sigma'). \tag{S.14}$$

Proof. Let $\mathcal{M} = \{M_x\}$, $\mathcal{M}' = \{M_y'\}$ be measurements and define the POVM on \mathcal{N} whose elements are given by $\{M_x\}_x \cup \{M_y'\}_y$. Then we can write

$$\mathcal{N}(p\rho + (1-p)\rho') = p\sum_{x} \operatorname{tr}(M_{x}\rho)|x\rangle\langle x| + (1-p)\sum_{y} \operatorname{tr}(M'_{y}\rho')|y\rangle\langle y|.$$
 (S.15)

As a result using Lemma 9.2,

$$D_{\mathbb{M}}(p\rho + (1-p)\rho' \| p\sigma + (1-p)\sigma') \ge D\left(\mathcal{N}(p\rho + (1-p)\rho') \| \mathcal{N}(p\sigma + (1-p)\sigma')\right)$$

$$= pD\left(\sum_{x} \operatorname{tr}(M_{x}\rho)|x\rangle\langle x| \| \sum_{x} \operatorname{tr}(M_{x}\sigma)|x\rangle\langle x|\right) + (1-p)D\left(\sum_{y} \operatorname{tr}(M'_{y}\rho')|y\rangle\langle y| \| \sum_{y} \operatorname{tr}(M'_{y}\sigma')|y\rangle\langle y|\right). \tag{S.16}$$

As this inequality is valid for any measurements \mathcal{M} and \mathcal{M}' , taking the supremum over such measurements gives

$$D_{\mathbb{M}}(p\rho + (1-p)\rho' \| p\sigma + (1-p)\sigma') \ge pD_{\mathbb{M}}(\rho\|\sigma) + (1-p)D_{\mathbb{M}}(\rho'\|\sigma') . \tag{S.17}$$

For the other direction, consider a measurement $\mathcal{M} = \{M_x\}$. We can write

$$\mathcal{M}(p\rho + (1-p)\rho') = \sum_{x} p \operatorname{tr}(M_x \rho)|x\rangle\langle x| + (1-p)\operatorname{tr}(M_x \rho')|x\rangle\langle x|.$$
 (S.18)

Combining this with the joint convexity of the relative entropy [NC00, Theorem 11.12], we get

$$D_{\mathbb{M}}(p\rho + (1-p)\rho' \| p\sigma + (1-p)\sigma') = D\Big(\mathcal{M}(p\rho + (1-p)\rho') \| \mathcal{M}(p\sigma + (1-p)\sigma')\Big)$$

$$\leq p D\Big(\sum_{x} \operatorname{tr}(M_{x}\rho)|x\rangle\langle x| \| \sum_{x} \operatorname{tr}(M_{x}\sigma)|x\rangle\langle x|\Big) + (1-p) D\Big(\sum_{x} \operatorname{tr}(M_{x}\rho')|x\rangle\langle x| \| \sum_{x} \operatorname{tr}(M_{x}\sigma')|x\rangle\langle x|\Big)$$

$$\leq p D_{\mathbb{M}}(\rho \| \sigma) + (1-p) D_{\mathbb{M}}(\rho' \| \sigma') . \tag{S.19}$$

Lemma 9.4. For density operators ρ , σ , and σ' and $p \in [0,1]$ the measured relative entropy satisfies

$$D_{\mathbb{M}}(\rho \| p\sigma + (1-p)\sigma') \le p D_{\mathbb{M}}(\rho \| \sigma) + (1-p) D_{\mathbb{M}}(\rho \| \sigma') . \tag{S.20}$$

Proof. For any measurement \mathcal{M} ,

$$D(\mathcal{M}(\rho)||\mathcal{M}(p\sigma + (1-p)\sigma')) = D(\mathcal{M}(\rho)||p\mathcal{M}(\sigma) + (1-p)\mathcal{M}(\sigma'))$$

$$\leq pD(\mathcal{M}(\rho)||\mathcal{M}(\sigma)) + (1-p)D(\mathcal{M}(\rho)||\mathcal{M}(\sigma'))$$

$$\leq pD_{\mathbb{M}}(\rho||\sigma) + (1-p)D_{\mathbb{M}}(\rho||\sigma'), \qquad (S.21)$$

where the first inequality step uses the convexity of the relative entropy [NC00, Theorem 11.12]. Taking the supremum over \mathcal{M} , we get the desired result.

10 Basic topological facts

For completeness we state here some standard topological facts about density operators and tracepreserving completely positive maps.

Lemma 10.1. Let $\alpha \in \mathbb{R}^+$. The space of non-negative operators on a finite-dimensional Hilbert space E with trace smaller or equal to α (respectively equal to α) is compact.

Proof. Let $D'(E) := \{ \rho \in Pos(E) : tr(\rho) \leq \alpha \}$ denote the set non-negative operators on E with trace not larger than one, where Pos(E) is the set of non-negative operators on E. Consider the ball $\mathcal{B} := \{ e \in E : \|e\| \leq \alpha \}$ which is compact. The function $\mathcal{B} \ni e \mapsto f(e) = ee^{\dagger} \in D'(E)$ is continuous and thus the set $f(\mathcal{B}) = \{ ee^{\dagger} : e \in E, \|e\| \leq \alpha \}$ is compact, as continuous functions map compact sets to compact sets. By the spectral theorem it follows that $D'(E) = conv f(\mathcal{B})$. As the convex hull of every compact set is compact this proves the assertion. The same argumentation (by replacing the inequalities with equalities) proves that the set of non-negative operators on E with trace α is compact.

Lemma 10.2. Let E, G be finite-dimensional Hilbert spaces and let $\sigma_G \in Pos(G)$. The space of non-negative operators on $E \otimes G$ with a marginal on G smaller or equal to σ_G (respectively equal to σ_G) is compact.

Proof. Let $\sigma_G \in \operatorname{Pos}(G)$. By Lemma 10.1, the set of non-negative operators on $E \otimes G$ with trace not larger than $\alpha \in \mathbb{R}^+$ is compact. The set $\{X \in E \otimes G : \operatorname{tr}_E(X) \leq \rho_G\}$ is closed. The intersection of a compact set and a closed set is compact which implies that $\{X \in \operatorname{Pos}(E \otimes G) : \operatorname{tr}_E(X) \leq \rho_G\}$ is compact. Since the set $\{X \in E \otimes G : \operatorname{tr}_E(X) = \rho_G\}$ is closed the same argumentation shows that $\{X \in \operatorname{Pos}(E \otimes G) : \operatorname{tr}_E(X) = \rho_G\}$ is compact.

Remark 10.3. Let E and G be two finite-dimensional Hilbert spaces. The space of trace-non-increasing (respectively trace-preserving) completely positive maps from E to G is compact. To see this note that Lemma 10.2 implies that the set $\mathcal{F} := \{X \in \operatorname{Pos}(E \otimes G) : \operatorname{tr}_G(X) \leq \operatorname{id}_E\}$ is compact. By the Choi-Jamiolkowski representation \mathcal{F} is however isomorphic to the set of all trace-non-increasing completely positive maps from E to G. The same argumentation applied to the set $\mathcal{F} := \{X \in \operatorname{Pos}(E \otimes G) : \operatorname{tr}_G(X) = \operatorname{id}_E\}$ shows that the set of trace-preserving completely positive maps from E to G is compact.

Lemma 10.4. Let G and K be finite-dimensional Hilbert spaces and let $\sigma_{EGK} \in D(E \otimes G \otimes K)$. The mapping $TPCP(G, G \otimes K) \ni \mathcal{R} \mapsto F(\sigma_{EGK}, \mathcal{R}_{G \to GK}(\sigma_{EGK})) \in [0, 1]$ is continuous.

Proof. This follows directly from the continuity of $\mathcal{R} \mapsto \mathcal{R}_{G \to GK}(\sigma_{EG})$ and the continuity of the fidelity (see, e.g., Lemma B.9 of [FR14]).

Lemma 10.5. Let E, G, and K be separable Hilbert spaces and $\mathcal{R} \in \mathrm{TPCP}(G,K)$. Then the mapping $\mathrm{D}(E \otimes G) \ni X \mapsto \mathcal{I}_E \otimes \mathcal{R}_{G \to K}(X_{EG}) \in \mathrm{D}(E \otimes K)$ is continuous.

Proof. As the map is linear it suffices to show that it is bounded. For that we can decompose X = P - N with P and N orthogonal non-negative operators. Then we have

$$\|\mathcal{I}_E \otimes \mathcal{R}_{G \to K}(X)\|_1 \leq \|\mathcal{I}_E \otimes \mathcal{R}_{G \to K}(P)\|_1 + \|\mathcal{I}_E \otimes \mathcal{R}_{G \to K}(N)\|_1 = \operatorname{tr}(P) + \operatorname{tr}(N) = \|X\|_1 . \quad (S.22)$$

11 Touching sets lemma

We prove here a basic fact that is used in the proof of Theorem 2.1.

Lemma 11.1. Let K_0 and K_1 be two sets such that $K_0 \cup K_1 = [0,1]$ and $0 \in K_0$, $1 \in K_1$. Then for any $\delta > 0$ there exists $u \in K_0$ and $v \in K_1$ such that $0 \le v - u \le \delta$.

Proof. We define $\mu := \inf K_1$ and distinguish between the two cases $\mu \in K_0$ and $\mu \notin K_0$.

If $\mu \in K_0$, it suffices to show that for any $\delta > 0$ we have $[\mu, \mu + \delta] \cap K_1 \neq \emptyset$, since by choosing $u = \mu$ this implies that $u \in K_0$ and that there exists a $v \in [\mu, \mu + \delta]$ such that $v \in K_1$. By contradiction, we assume that $[\mu, \mu + \delta] \cap K_1 = \emptyset$. This implies that either inf $K_1 < \mu$ or inf $K_1 \ge \mu + \delta$, which contradicts $\mu := \inf K_1$.

If $\mu \notin K_0$ it suffices to show that for any $\delta > 0$ we have $[\mu - \delta, \mu] \cap K_0 \neq \emptyset$, since by choosing $v = \mu$ this ensures that $v \in K_1$ and that there exists a $u \in [\mu - \delta, \mu]$ such that $u \in K_0$. Assume by contradiction that $[\mu - \delta, \mu] \cap K_0 = \emptyset$, which implies that $[\mu - \delta, \mu] \subset K_1$. This however contradicts $\mu := \inf K_1$.

12 Properties of projected states

We first prove variant of the *gentle measurement lemma* [Win99], which is used repeatedly in the proof of Theorem 2.1.

Lemma 12.1. Let E and G be separable Hilbert spaces and let Π_G be a finite-rank projector on G. For any non-negative operator σ_{EG} on $E \otimes G$ we have

$$F\left(\sigma_{EG}, \frac{(\mathrm{id}_E \otimes \Pi_G)\sigma_{EG}(\mathrm{id}_E \otimes \Pi_G)}{\mathrm{tr}((\mathrm{id}_E \otimes \Pi_G)\sigma_{EG})}\right)^2 \ge \mathrm{tr}(\Pi_G \sigma_{EG}) \tag{S.23}$$

and

$$F(\sigma_{EG}, (\mathrm{id}_E \otimes \Pi_G)\sigma_{EG}(\mathrm{id}_E \otimes \Pi_G)) \ge \operatorname{tr}(\Pi_G \sigma_{EG})$$
 (S.24)

Proof. Let $|\psi\rangle$ be a purification of σ_{EG} then by Uhlmann's theorem [Uhl76] we find

$$F\left(\sigma_{EG}, \frac{(\mathrm{id}_E \otimes \Pi_G)\sigma_{EG}(\mathrm{id}_E \otimes \Pi_G)}{\mathrm{tr}((\mathrm{id}_E \otimes \Pi_G)\sigma_{EG})}\right)^2 \ge \frac{(\langle \psi | \Pi_G | \psi \rangle)^2}{\mathrm{tr}((\mathrm{id}_E \otimes \Pi_G)\sigma_{EG})} = \mathrm{tr}(\Pi_G \sigma_{EG}) \tag{S.25}$$

and

$$F(\sigma_{EG}, (\mathrm{id}_E \otimes \Pi_G)\sigma_{EG}(\mathrm{id}_E \otimes \Pi_G))^2 \ge (\langle \psi | \Pi_G | \psi \rangle)^2 = \operatorname{tr}(\Pi_G \sigma_{EG})^2. \tag{S.26}$$

We next prove a basic statement about converging projectors that is used several times in the proof of Theorem 2.1.

Lemma 12.2. Let E be a separable Hilbert space and let $\{\Pi_E^e\}_{e\in E}$ be a sequence of finite-rank projectors on E which converges to id_E with respect to the weak operator topology. Then for any density operator σ_E on E we have $\lim_{e\to\infty} \mathrm{tr}(\Pi_E^e \sigma_E) = \mathrm{tr}(\sigma_E)$.

Proof. By assumption the Hilbert space E is separable which implies that any state σ_E can be written as $\sigma_E = \sum_i p_i |x_i\rangle\langle x_i|$, where $p_i \geq 0$, $\sum_i p_i = 1$ and $\{|x_i\rangle\}_i$ is an orthonormal basis on E. As the sequence $\{\Pi_E^e\}_{e\in\mathbb{N}}$ weakly converges to id_E , we find

$$\lim_{e \to \infty} \operatorname{tr}(\Pi_E^e \sigma_E) = \lim_{e \to \infty} \sum_i p_i \langle x_i | \Pi_E^e | x_i \rangle = \sum_i p_i \lim_{e \to \infty} \langle x_i | \Pi_E^e | x_i \rangle = \sum_i p_i \langle x_i | \operatorname{id}_E | x_i \rangle = \operatorname{tr}(\sigma_E) , \quad (S.27)$$

where the second step uses dominated convergence that is applicable since $|\langle x_i|\Pi_E^e|x_i\rangle| \leq |\langle x_i|\mathrm{id}_E|x_i\rangle|$ for all $e \in \mathbb{N}$.

Let E and G be separable Hilbert spaces and let S denote the set of bipartite density operators on $E \otimes G$ with a fixed marginal σ_G on G. Let $\{\Pi_E^e\}_{e \in \mathbb{N}}$ be a sequence of projectors with rank e that weakly converge to id_E and S^e be the set of bipartite states on $E \otimes G$ whose marginal on E is contained in the support of Π_E^e and whose marginal on G is identical to G.

Lemma 12.3. For every $\sigma_{EG} \in \mathcal{S}$ there exists a sequence $\{\sigma_{EG}^e\}_{e \in \mathbb{N}}$ with $\sigma_{EG}^e \in \mathcal{S}^e$ that converges to σ_{EG} with respect to the trace norm.

Proof. For $\sigma_{EG} \in \mathcal{S}$, let

$$\bar{\sigma}_{EG}^e := \frac{(\Pi_E^e \otimes \mathrm{id}_G)\sigma_{EG}(\Pi_E^e \otimes \mathrm{id}_G)}{\mathrm{tr}((\Pi_E^e \otimes \mathrm{id}_G)\sigma_{EG})} , \qquad (S.28)$$

which has the desired support on E, however, $\bar{\sigma}_G^e \neq \sigma_G$ in general. This is fixed by considering

$$\sigma_{EG}^e := \operatorname{tr} \left((\Pi_E^e \otimes \operatorname{id}_G) \sigma_{EG} \right) \bar{\sigma}_{EG}^e + |0\rangle \langle 0|_E \otimes \operatorname{tr}_E \left((\Pi_E^{e\perp} \otimes \operatorname{id}_G) \sigma_{EG} (\Pi_E^{e\perp} \otimes \operatorname{id}_G) \right)_G, \tag{S.29}$$

where $|0\rangle_E$ is a normalized state on E. Since the partial trace on E is cyclic on E we obtain

$$\sigma_G^e = \operatorname{tr}_E(\sigma_{EG}^e) = \operatorname{tr}_E((\Pi_E^e \otimes \operatorname{id}_G)\sigma_{EG}(\Pi_E^e \otimes \operatorname{id}_G)) + \operatorname{tr}_E((\Pi_E^{e\perp} \otimes \operatorname{id}_G)\sigma_{EG}(\Pi_E^{e\perp} \otimes \operatorname{id}_G))$$

$$= \operatorname{tr}_E((\Pi_E^e \otimes \operatorname{id}_G)\sigma_{EG}) + \operatorname{tr}_E((\Pi_E^{e\perp} \otimes \operatorname{id}_G)\sigma_{EG}) = \operatorname{tr}_E(\sigma_{EG}) = \sigma_G. \quad (S.30)$$

By the multiplicativity of the trace norm under tensor products and since $||A||_1 = \text{tr}(\sqrt{A^{\dagger}A})$, the triangle inequality implies that

$$\|\bar{\sigma}_{EG}^{e} - \sigma_{EG}^{e}\|_{1} \leq 1 - \operatorname{tr}\left(\left(\Pi_{E}^{e} \otimes \operatorname{id}_{G}\right)\sigma_{EG}\right) + \left\|\operatorname{tr}_{E}\left(\left(\Pi_{E}^{e\perp} \otimes \operatorname{id}_{G}\right)\sigma_{EG}\left(\Pi_{E}^{e\perp} \otimes \operatorname{id}_{G}\right)\right)\right\|_{1}$$

$$= 1 - \operatorname{tr}\left(\left(\Pi_{E}^{e} \otimes \operatorname{id}_{G}\right)\sigma_{EG}\right) + \operatorname{tr}\left(\left(\Pi_{E}^{e\perp} \otimes \operatorname{id}_{G}\right)\sigma_{EG}\right) = 2\left(1 - \operatorname{tr}\left(\Pi_{E}^{e}\sigma_{E}\right)\right). \quad (S.31)$$

Lemma 12.2 now implies that $\lim_{e\to\infty}\operatorname{tr}(\Pi_E^e\sigma_E)=1$. We note that the sequence $\{\bar{\sigma}_{EG}^e\}_{e\in\mathbb{N}}$ converges to σ_{EG} in the trace norm since by the Fuchs-van de Graaf inequality [FvdG99], Lemma 12.1 and Lemma 12.2

$$\lim_{e \to \infty} \|\sigma_{EG} - \bar{\sigma}_{EG}^e\|_1 \le \lim_{e \to \infty} 2\sqrt{1 - F(\sigma_{EG}, \bar{\sigma}_{EG}^e)^2} \le \lim_{e \to \infty} 2\sqrt{1 - \text{tr}(\Pi_E^e \sigma_E)} = 0.$$
 (S.32)

Combining this with (S.31) and the triangle inequality proves that $\{\sigma_{EG}^e\}_{e\in\mathbb{N}}$ converges to σ_{EG} in the trace norm.

13 The transpose map is not square-root optimal

As discussed in Section 7 (see main document), for pure states ρ_{ABC} it is known [BK02] that

$$F(A; C|B)_{\rho} \le \sqrt{F(\rho_{ABC}, \mathcal{T}_{B \to BC}(\rho_{AB}))}$$
 (S.33)

holds for $\mathcal{T}_{B\to BC}$ the transpose map. In this appendix we show that (S.33) does not hold for all mixed states. Let dim $A = \dim B = \dim C = 2$ and consider the state

$$\rho_{ABC} = \frac{1}{2} |0\rangle\langle 0|_A \otimes |0\rangle\langle 0|_B \otimes |0\rangle\langle 0|_C + \frac{1}{8} |1\rangle\langle 1|_A \otimes \mathrm{id}_{BC} . \tag{S.34}$$

The transpose map satisfies

$$\mathcal{T}_{B\to BC}(|0\rangle\langle 0|_B) = \frac{5}{6}|00\rangle\langle 00|_{BC} + \frac{1}{6}|01\rangle\langle 01|_{BC} \quad \text{and} \quad \mathcal{T}_{B\to BC}(|1\rangle\langle 1|_B) = \frac{1}{2}|10\rangle\langle 10|_{BC} + \frac{1}{2}|11\rangle\langle 11|_{BC} . \tag{S.35}$$

If we consider a recovery map $\mathcal{R}_{B\to BC}$ that is defined by

$$\mathcal{R}_{B\to BC}(|0\rangle\langle 0|_B) = |00\rangle\langle 00|_{BC} \quad \text{and} \quad \mathcal{R}_{B\to BC}(|1\rangle\langle 1|_B) = \frac{1}{3} (|01\rangle\langle 01|_{BC} + |10\rangle\langle 10|_{BC} + |11\rangle\langle 11|_{BC}) ,$$
(S.36)

we find $F(\rho_{ABC}, \mathcal{R}_{B\to BC}(\rho_{AB})) > 0.9829$ and $\sqrt{F(\rho_{ABC}, \mathcal{T}_{B\to BC}(\rho_{AB}))} < 0.9696$, which shows that (S.33) cannot hold since $F(\rho_{ABC}, \mathcal{R}_{B\to BC}(\rho_{AB})) \leq F(A; C|B)_{\rho}$.

This does not show that one cannot prove a non-trivial guarantee on the performance of the transpose map relative to the optimal recovery map, but it suggests that such a guarantee would have to be worse than the square root (and actually worse that the fourth root as well using another example), or perhaps it is more naturally expressed using a different distance measure (using similar examples, the trace distance does not seem to be a good candidate, either). We further note that this example does not show that Equation (1.2) is wrong for the transpose map.

References

- [BK02] Howard Barnum and Emanuel Knill. Reversing quantum dynamics with near-optimal quantum and classical fidelity. *Journal of Mathematical Physics*, 43(5):2097–2106, 2002.
- [FR14] Omar Fawzi and Renato Renner. Quantum conditional mutual information and approximate Markov chains, 2014. arXiv:1410.0664v3.
- [FvdG99] Christopher A. Fuchs and Jeroen van de Graaf. Cryptographic distinguishability measures for quantum-mechanical states. *IEEE Transactions on Information Theory*, 45(4):1216 –1227, May 1999.
- [Hay01] Masahito Hayashi. Asymptotics of quantum relative entropy from a representation theoretical viewpoint. *Journal of Physics A: Mathematical and General*, 34(16):3413, 2001.
- [HP91] Fumio Hiai and D'enes Petz. The proper formula for relative entropy and its asymptotics in quantum probability. *Communications in Mathematical Physics*, 143(1):99–114, 1991.
- [NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.
- [Uhl76] Armin Uhlmann. The "transition probability" in the state space of a *-algebra. Reports on Mathematical Physics, 9(2):273 279, 1976.
- [Win99] Andreas Winter. Coding theorem and strong converse for quantum channels. *IEEE Transactions on Information Theory*, 45(7):2481–2485, Nov 1999.